DOM tubing does actually have a seam although it is not as obvious (as CREW or HREW tube), it should be visible on the surface and run the length of the tube.
Strong and well-finished DOM is an electric resistance welded tube tested for soundness of weld and drawn through a die and over a mandrel. This process imparts significantly improved mechanical properties to the tube, due to the cold working process. It is considered a high quality tube, and is normally constructed from SAE 1020 or 1026 steel. Note that, technically DOM refers to the process by which the tube is finished after having started as an ERW tube. Technically, DOM is not a type of steel tube, but rather a process. As so often happen though - in common use the term has become accepted to mean a specific type of tubing rather than a process. In this case, when people say "DOM" they normally mean an ERW tube drawn over a mandrel at (close to) room temperature and made from SAE 1020 steel. It is normally drawn to O.D. and I.D. dimensions.
The manufacturing process for DOM tubing begins with coils of steel, which are slit to the proper width for the desired tube size. The strip is cold formed and passed through an electric resistance welder which joins the edges together, under pressure, to complete the tubular shape. After testing the weld's integrity, the tubing is cut to length for further processing.
The cold-drawing process creates a uniform, precision product with substantially improved tolerances, surface finish and tensile strength, increased hardness and good machinability. In this process, the tube is cleaned and annealed, and one end of each length is squeezed to a point so it can be gripped by the drawing mechanism. The tube is then drawn through one or more dies and over mandrels. This reduces the diameter of the tube and thins its walls to the required dimensions in a controlled fashion to provide the qualities desired in the finished product. Metallurgically, drawing improves the tube's concentricity, tensile strength, hardness and machinability. Close dimensional accuracy is achieved through tight control of both outside and inside diameters.[